project euler problem #8

Aside

Find the greatest product of five consecutive digits in the following 1000-digit number:

73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450

http://projecteuler.net/problem=8


highlight below for my solution:


a_string = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450"

print max([reduce(lambda x, y : x * y, [int(x) for x in a_string[i:i+5]]) 
           for i in range(len(a_string) - 5)
          ])

[More programming riddles]

project euler problem #6

Aside

The sum of the squares of the first ten natural numbers is,

12 + 22 + … + 10^2 = 385
The square of the sum of the first ten natural numbers is,

(1 + 2 + … + 10)^2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

http://projecteuler.net/problem=6


highlight below for my solution:


# A = (sum[1..n])^2 = [n(n+1)/2] ^ 2
# B = sum[1^2..n^2] = n(n+1)(2n+1)/6
# A-B = n(n+1)(3n^2-n-2)/12


def delta_sum_products_product_sum(n):
    return n * (n + 1) * (3 * (n ** 2) - n - 2) / 12


print delta_sum_products_product_sum(100)
[More programming riddles]

project euler problem #7

Aside

By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.

What is the 10 001st prime number?

http://projecteuler.net/problem=7


highlight below for my solution:


#using a prime number set datastructure - https://gist.github.com/aausch/6709819
p =  PrimeSet()

i = 10001

while (len(p)<10001):
    i in p
    i += i

print sorted(list(p))[10000]

(see also my solution to problem #5)


[More programming riddles]

project euler problem #5

Aside

2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.

What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?

http://projecteuler.net/problem=5


highlight below for my solution:


#using a prime number set datastructure - https://gist.github.com/aausch/6709819
p = PrimeSet()

def min_product(n):
    n in p #initialize the PrimeSet with all primes less than n
    product = 1
    for prime in p:
        product = product * (prime ** (int(n ** (1.0/prime))))
    return product

print min_product(20)

(see also my solution to problem #3)


[More programming riddles]

project euler problem #3

Aside

The prime factors of 13195 are 5, 7, 13 and 29.

What is the largest prime factor of the number 600851475143 ?

http://projecteuler.net/problem=3


highlight below for my solution:


#using a prime number set datastructure - https://gist.github.com/aausch/6709819
p_set = PrimeSet()
n = 600851475143
sqrt = int(n ** 0.5) 
p_set[sqrt]
max_factor = 1
for x in p_set:
    if n % x == 0 and x > max_factor:
        max_factor = x       
print max_factor


[More programming riddles]

project euler problem #2

Aside

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.

http://projecteuler.net/problem=2


  • try solving it as a python one-liner – i couldn’t figure out a clean solution
  • try optimizing your solution for speed

highlight below for my solution:


#using a fibonacci dictionary - https://gist.github.com/aausch/6707846
fib_dict = FibDict()
j = 3
while (fib_dict[j] < 4000000):
    j = j + 3
print sum([fib_dict[i] for i in range(3,j,3)])  # j = 36, probably


[More programming riddles]

project euler problem #1

Aside

If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000.

http://projecteuler.net/problem=1


  • try solving it as a python one-liner
  • try optimizing your solution for speed

highlight below for my solution:


sum(range(0,1000,3)) + sum(range(0,1000,5)) - sum(range(0,1000,15))

[More programming riddles]